H&E载玻片中的细胞识别是必不可少的先决条件,可以为进一步的病理分析铺平道路,包括组织分类,癌症分级和表型预测。但是,使用深度学习技术执行此类任务需要大型的细胞级注释数据集。尽管以前的研究已经调查了组织分类中对比度自我监督方法的性能,但该类别算法在细胞鉴定和聚类中的实用性仍然未知。在这项工作中,我们通过提出对比度细胞表示学习(CCRL)模型来研究了在细胞聚类中自学学习(SSL)的实用性。通过全面的比较,我们表明该模型可以通过来自不同组织类型的两个数据集的大幅度优于所有当前可用的细胞聚类模型。更有趣的是,结果表明,我们提出的模型在几个单元格类别中运作良好,而SSL模型的实用性主要在具有大量类别的自然图像数据集的背景下显示(例如Imagenet)。本研究中提出的无监督表示学习方法消除了细胞分类任务中数据注释的耗时步骤,这使我们能够在与以前的方法相比更大的数据集上训练我们的模型。因此,考虑到有希望的结果,这种方法可以为自动细胞表示学习打开新的途径。
translated by 谷歌翻译
Machine learning (ML) has found broad applicability in quantum information science in topics as diverse as experimental design, state classification, and even studies on quantum foundations. Here, we experimentally realize an approach for defining custom prior distributions that are automatically tuned using ML for use with Bayesian quantum state estimation methods. Previously, researchers have looked to Bayesian quantum state tomography due to its unique advantages like natural uncertainty quantification, the return of reliable estimates under any measurement condition, and minimal mean-squared error. However, practical challenges related to long computation times and conceptual issues concerning how to incorporate prior knowledge most suitably can overshadow these benefits. Using both simulated and experimental measurement results, we demonstrate that ML-defined prior distributions reduce net convergence times and provide a natural way to incorporate both implicit and explicit information directly into the prior distribution. These results constitute a promising path toward practical implementations of Bayesian quantum state tomography.
translated by 谷歌翻译
神经网络(NNS)的重要性和复杂性正在增长。神经网络的性能(和能源效率)可以通过计算或内存资源约束。在内存阵列附近或内部放置计算的内存处理(PIM)范式是加速内存绑定的NNS的可行解决方案。但是,PIM体系结构的形式各不相同,其中不同的PIM方法导致不同的权衡。我们的目标是分析基于NN的性能和能源效率的基于DRAM的PIM架构。为此,我们分析了三个最先进的PIM架构:(1)UPMEM,将处理器和DRAM阵列集成到一个2D芯片中; (2)Mensa,是针对边缘设备量身定制的基于3D堆栈的PIM架构; (3)Simdram,它使用DRAM的模拟原理来执行位序列操作。我们的分析表明,PIM极大地受益于内存的NNS:(1)UPMEM在GPU需要内存过度按要求的通用矩阵 - 矢量乘数内核时提供23x高端GPU的性能; (2)Mensa在Google Edge TPU上提高了3.0倍和3.1倍的能源效率和吞吐量,用于24个Google Edge NN型号; (3)SIMDRAM在三个二进制NNS中以16.7倍/1.4倍的速度优于CPU/GPU。我们得出的结论是,由于固有的建筑设计选择,NN模型的理想PIM体系结构取决于模型的独特属性。
translated by 谷歌翻译
链接预测是图形结构数据(例如,社交网络,药物副作用网络等)的基本问题。图形神经网络为此问题提供了强大的解决方案,特别是通过学习封闭目标链接的子图的表示(即节点对)。但是,这些解决方案不能很好地扩展到大图,因为封闭子图的提取和操作在计算上是昂贵的,尤其是对于大图。本文提出了一个可扩展的链接预测解决方案,我们称之为缩放,该解决方案利用稀疏的封闭子图来做出预测。为了提取稀疏的封闭子图,缩放缩放从目标对节点进行多次随机步行,然后在所有访问的节点引起的采样封闭子图上操作。通过利用较小的采样封闭子图,缩放的缩放可以缩放到较大的图形,而在保持高精度的同时,缩小开销要少得多。缩放进一步提供了控制计算开销与准确性之间的权衡的灵活性。通过全面的实验,我们已经证明,缩放可以产生与现有子图表示学习框架报告的同时所报道的,同时计算要求较少的准确性。
translated by 谷歌翻译
在过去的二十年中,癫痫发作检测和预测算法迅速发展。然而,尽管性能得到了重大改进,但它们使用常规技术(例如互补的金属氧化物 - 轴导剂(CMO))进行的硬件实施,在权力和面积受限的设置中仍然是一项艰巨的任务;特别是当使用许多录音频道时。在本文中,我们提出了一种新型的低延迟平行卷积神经网络(CNN)体系结构,与SOTA CNN体系结构相比,网络参数少2-2,800倍,并且达到5倍的交叉验证精度为99.84%,用于癫痫发作检测,检测到99.84%。癫痫发作预测的99.01%和97.54%分别使用波恩大学脑电图(EEG),CHB-MIT和SWEC-ETHZ癫痫发作数据集进行评估。随后,我们将网络实施到包含电阻随机存储器(RRAM)设备的模拟横梁阵列上,并通过模拟,布置和确定系统中CNN组件的硬件要求来提供全面的基准。据我们所知,我们是第一个平行于在单独的模拟横杆上执行卷积层内核的人,与SOTA混合Memristive-CMOS DL加速器相比,潜伏期降低了2个数量级。此外,我们研究了非理想性对系统的影响,并研究了量化意识培训(QAT),以减轻由于ADC/DAC分辨率较低而导致的性能降解。最后,我们提出了一种卡住的重量抵消方法,以减轻因卡住的Ron/Roff Memristor重量而导致的性能降解,而无需再进行重新培训而恢复了高达32%的精度。我们平台的CNN组件估计在22nm FDSOI CMOS流程中占据31.255mm $^2 $的面积约为2.791W。
translated by 谷歌翻译